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Development of a Linear AerLodynamic Analysis for Unsteady

Transonic Cascades

SUMMARY

A linear unsteady potential flow analysis, which accounts for the effects of

blade geometry and mean pressure rise or fall across the blade row, is being developed

to predict the aerodynamic response to blade vibrations in the fan, compressor,

or turbine stages of jet engines. Based on the assumption of small-amplitude blade

motions, the unsteady flow is governed by linear equations with variable coefficients

which depend on the underlying steady flow. These equations are approximated using

difference expressions determined from an implicit least-squares development and

applicable on arbitrary grids. The resulting system of linear algebraic equations

permits an efficient, direct (i.e., noniterative) solution to the linear unsteady

boundary value problem. In previous work unsteady solutions were determined for

subsonic cascades of blunt-nosed airfoils by matching an "outer" solution, determined

on a rectilinear-type cascade mesh which spans an extended blade passage region, to

an "inner" solution, determined on a pelar-type local mesh which surrounds a blade

leading edge. In the present effort the unsteady aerodynamic analysis is being

extended for transonic applications.

Revised aerodynamic and numerical models have been formulated to determine a

first-order approximation to a weak solution (i.e., a solution admitting discon-

tinuities) of the time-dependent, full-potential equation for small-amplitude,

harmonic, blade motions. The aerodynamic model is intended for application at

reduced frequencies of order unity or lower - an important feature for turbomachinery

applications - and includes the effect of shock motions in a linear frequency-dom@in

calculation. The implicit, least-squares, numerical approximation has been extended

to accommodate type-dependent and rotated differencing strategies in supersonic

regions and at the interfaces between subsonic and supersonic regions, and to fit

shocks into the unsteady flow field. In the present report, this approximation has

been implemented on the cascade mesh and calculations are presented for cascades of

sharp-edged airfoils with blade mean positions aligned with the mean or steady flow.

Shocks have been "captured" in the finite difference approximation as smooth regions

in which the flow variables are rapidly but continuously varying. Results are pres-

ented here for unstaggered and staggered cascades to demonstrate the present capa-

bility and to partially illustrate the effects of blade geometry, Mach number, and

vibration frequency on unsteady response.

1



R82"915640-8

INTRODUCTION

In transonic flow relatively small-amplitude unsteady motions can produce lar_

variations in the magnitude and phase of the aerodynamic forces and moments. Thes_

characteristics enhance the likelihood of an aeroelastic instability and thus are

major concern in the aerodynamic design of configurations that operate in the

transonic regime. Of particular concern are aeroelastic behavior and flutter

boundaries. Although much progress has been made in the development of unsteady

transonic computational methods for the aeroelastic analysis of two-dimensional,

isolated airfoils (c.f., Ref. i), relatively little attention has been focused on

the development of such methods for turbomachinery blade rows (c.f., Ref. 2). Thus

the objective of the present effort is to develop a reliable and efficient procedu_

for predicting the forces and moments acting on the oscillating blades of a two-

dimensional cascade operating at transonic Mach numbers. Although the interest hel

is focused on cascades, the basic aerodynamic model described in this report shou]

also provide an efficient method for calculating the unsteady forces associated wit

the motions of a variety of aerodynamic configurations including those of thick,

blunt-nosed, transonic airfoils.

Background

Unsteady Transonic Flow Models

Three different potential flow models have and are being extensively developed

to treat unsteady transonic flow past two-dimensional, isolated airfoils. These

include: (I) a linear, low frequency, very small, unsteady disturbance approxima-

tion (Refs. 3-6); (2) a nonlinear, low frequency, small-disturbance approximation

(Refs. 7-8); and (3) analyses based on the time-dependent, full-potential equatior

(Refs. 9-11). In proceeding from the first to the third of these models more of t_

physics of unsteady transonic phenomena is captured, but computational complexity

and the cost of obtaining unsteady predictions is increased.

In the first approach, often referred to as the "time-linearized" unsteady

transonic approximation, the amplitudes and frequency of the unsteady perturbations

are assumed to be small compared to steady velocity perturbations caused by airfoil

shape and incidence. Steady perturbations are, in turn, assumed to be small com-

pared to the uniform stream speed. Both frequency- (Refs. 3-5) and time-domain

(Ref. 6_ time-linearized, unsteady, transonic solutions can be determined with

relatively little expenditure of computer time. A serious limitation of the fre-

quency-domain calculations has been the neglect of shock wave motions. The amplitu

of such motions increases with the amplitude of the airfoil motion and decreases wi

frequency. Shock motions can contribute substantially to the time varying load,

especially at low frequency, and must be considered in computing unsteady solutions

correctly to lowest order. Fung, Yu and Seebass (Ref. 6) have recently provided a
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method to account for shock motions within the time-linearized formulation and to

calculate both indicial and harmonic responses due to small unsteady changes in

boundary conditions usi_B an implicit, time-marching_ finite-difference approxima-

tion.

The restrictions imposed by the time-linearized, unsteady, transonic approxi-

mation; i.e., that unsteady perturbations are small compared to steady perturbations,

and the neglect of shock motions in the earlier time-linearized solutions, have led

to the development of an alternative small-disturbance approximation (Refs. 7, 8).

In this second approach, steady and low-frequency unsteady disturbances to the free

stream are assumed to be of the same order and small relative to the free-stream

speed, resulting in a time-dependent, nonlinear, differential equation governing

the disturbance potential. An implicit time-marching, finite difference approxima-

tion and computer code (LTRAN2) have been developed for determining indicial response_

and predictions have been found to be in qualitative agreement with Tijdemann's

(Ref. 12) experimental observations on shock motions. Although the nonlinear,

transonic, small-disturbance approximation is formally valid only at low frequency,

high frequency versions of the LTRAN2 code have recently been developed to analyze

unsteady transonic flows past isolated airfoils (Refs. 13 and 14) and two-dimensional

unstaggered cascades (Ref. 15).

Simple treatment of arbitrary airfoils and airfoil motions is the principal

advantage of the transonic small-disturbance formulations. Airfoil and wake

boundary conditions are imposed on a flat, mean-surface approximation to the sir-

foil and wake; however, the assumptions that permit this simplification place severe

restrictions on airfoil shape and on the amplitude and frequency of the airfoil

motion. Restrictions on the amplitude of the motion may not detract from the use-

fulness of the small disturbance concept for most aeroelastic applications, but

those placed on frequency and airfoil geometry do pose serious limitations, par-

ticularly for the thick, blunt-nosed profiles which are a common feature of tran-

sonic designs. To overcome these geometric and kinematic limitations, several

researchers are developing time-dependent, full-potential analyses for unsteady,

transonic, airfoil applications.

Isogai (Ref. 9) was the first to apply the time-dependent, full-potential

equation to investigate the feasibility of treating thick, blunt-nosed airfoils.

His approach is essentially a hybrid one. Although the time-dependent, full-potential

equation is taken as the governing differential equation, airfoil and wake boundary

conditions are applied on the time-mean position of the airfoil surface and on the

x-axis, respectively. Thus, small-amplitude motions are implicitly assumed, but

boundary conditions are satisfied on the actual mean surface of the airfoil rather

than on a flat, mean-surface approximation. Isogai solved the full potential equa-

tion in nonconservative form using a time-marching, semi-implicit, finite-difference

procedure and a quasi-conservative scheme to capture shock motions. Computed results

for a NACA 64A006 airfoil compare well with the corresponding shadowgraph observations

made by Tijdeman (Ref. 12).
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With a view towards improving the computational efficiency and shock capturing
capability of Isogai's method and removing the small unsteady disturbance restrictior
Chipman and Jameson (Ref. i0) and Goorjian (Ref. ii) are developing complete full
potential formulations. In their work, the full, nonlinear, time-dependent, governir
equations are expressed in time-dependent coordinates so that flow tangency boundary
conditions can be imposed directly on moving airfoil surfaces. Chipman and Jameson
solve a system of first-order equations written in full conservation form in terms
of primitive variables. These equations are transformed to a time-varying, sheared,
rectilinear, coordinate system. Both explicit and implicit, time-marching, finite-
difference schemes have been coded. Goorjian has developed an algorithm for solving
the conservative form of the full-potential equation expressed in general, time-
varying, curvilinear coordinates by an alternating direction, fully-implicit methoc
The feasibility and accuracy of these approaches have been demonstrated for several
simple geometries including ones for which exceedingly large shock excursions occur.

The full potential formulations of Refs. i0 and ii represent very sophisticated
numerical analyses for revealing the physical features of unsteady transonic flows.
With further development these models should provide "benchmark" unsteady transonic
flow calculations, particularly for finite-amplitude unsteady motions. However, the
computing time requirements for these analyses will prohibit their routine use in
detailed aeroelastic investigations. The needs of the aeroelastician could perhaps
be better met by a linear, unsteady, small-disturbance, potential-flow formulation
which includes the effects of real airfoil geometry and moderate to high vibration
frequencies on unsteady response but still permits efficient numerical solutions.
The purpose of the present investigation is to provide such an unsteady analysis for
turbomachinery aeroelastic applications.

Unsteady Cascade Analyses

The unsteady aerodynamic analyses currently used for turbomachinery aeroelastic

studies (see Ref. 16 for an informative review) are based on classical linear

aerodynamic theory; i.e., the unsteady flow is essentially regarded as a small

fluctuation about uniform steady flow. Such analyses only apply in entirely subsonic

or entirely supersonic flow and neglect the effects of blade shape, mean incidence,

and mean pressure rise or fall across the blade row. As such, classical linear unste_

solutions fail to meet the requirements of turbomachinery designers over a wide ran_

of practical operating conditions.

To partially overcome the limitations of classical linear theor_ subsonic unste_

aerodynamic models have been formulated (Refs. 17-20) which include the effects of

blade geometry and steady flow turning on unsteady response. Here the unsteady flow

is considered as a small-amplitude harmonic fluctuation about fully nonuniform stead

flow. An asymptotic expansion of the time-dependent velocity potential then provides

equations which govern the steady and small-disturbance unsteady flows in a single,

extended, blade-passage region of the cascade. The steady flow is determined as a

solution of the full-potential equation, and the unsteady flow is governed by linear
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equations with variable coefficients which depend on the underlying steady flow.
With this formulation a numerical resolution of a time-independent, unsteady,
boundary-value problem is required only over a single blade-passage region o__
finite extent.

Several accurate and reliable numerical algorithms for solving the nonlinear,
steady problem for subsonic or transonic cascade flow are currently available (c.f.,
Ref. 21). A finite-difference approximation based on an implicit least-squares
development and applicable on arbitrary grids has been reported by the present
authors for resolving the subsonic, linear, unsteady problem (Ref. 22). This
approximation has been implemented on a rectilinear-type, body-fitted, and periodic
grid, called the "cascade" grid, to predict the unsteady flow in an extended blade-
passage region and on a dense, polar-type local grid to determine the unsteady flow
in the vicinity of a blunt leading edge. In previous studies suhsonic unsteady
solutions have been determined for cascades of sharp-edged airfoils with mean
positions aligned with the steady flow (Refs. 17, 22) and for cascades of NACA0012
airfoils (Refs. 23, 24), both to demonstrate the unsteady solution capability and
to illustrate the effects of blade geometry (including leading-edge curvature), mean
incidence, compressibility, and vibration frequency onunsteady response. Our
results to date have indicated that blade thickness produces a strong coupling
between the steady and unsteady flows, particularly at high subsonic Mach number and/or
low vibration frequency, but that steady turning due to mean incidence or camber
produced only weak steady/unsteady interactions. Recently, unsteady pressure-
difference predictions for a cascade of NACA65 series airfoils operating at low
Mach number and frequency have been shown to be in excellent agreement with cascade
wind tunnel measurements obtained by Carta (Ref. 25).

Scope of the Present Investigation

The objective of the present effort is to extend the foregoing unsteady aero-
dynamic analysis for cascades operating in the transonic Mach number regime. The
aerodynamic model of Refs. 17 and 24 has been extended for transonic applications
by introducing shock jump conditions into the full-potential, nonlinear, steady,
and the linear, unsteady, boundary-value problems. The first-order shock-jump
conditions provide relations for determining the discontinuous change in the unsteady
flow quantities across a shock as well as the amplitude of the shock motion. These
conditions are derived from the integral form of the mass conservation law, and
either the integral form of the conservation law for the component of fluid momentum
tangent to the shock or the requirement that no vorticity can be produced at the
shock. Further, the implicit-interpolation, numerical approximation described in
Ref. 22 for the resolution of unsteady subsonic cascade flows has been modified for
transonic applications by incorporating the rotated and type-dependent differencing
concepts introduced by Jameson (Ref. 26) and Murman and Cole (Refs. 27 and 28),
respectively. Thus, at each point of the finite difference mesh the unsteady equation
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is expressed in canonical form. In this form it becomes readily apparent that the

local character of the unsteady equation depends only on the local steady Mach

number. Difference approximations to the second derivative of the unsteady potenti_

the streamwise direction at a given point depend on whether the unsteady differenti_

equation is locally elliptic (subsonic flow), parabolic (sonic flow) or hyperbolic

(supersonic flow). At shocks first-order, shock-jump conditions are applied with

normal (to the shock) derivative terms approximated by one-sided differences on

either side of the shock.

With the present unsteady transonic formulation we seek a first-order

approximation to a weak solution (i.e., a solution admitting discontinuities)

of the time-dependent, full-potential equation for small-amplitude harmonic blade

motions. The nonconservative form of the unsteady differential equation is solved

in regions where the flow variables are continuous, and jump conditions are applied

at surfaces across which flow variables are discontinuous (shocks and blade wakes).

Hence, discontinuities are removed from the finite difference domain and "fitted"

into the overall unsteady solution. This unsteady formulation applies at reduced

frequencies of order unity or lower, and includes the effect of shock motions in

a linear, frequency-domain calculation. Finally, numerical results are obtained

by direct inversion of the resulting set of difference equations, and hence,

iterative solution procedures are not required.

Thus the present analysis differs in several important respects from the time-

linearized analyses which have been developed for the prediction of unsteady tran-

sonic flows past isolated airfoils (Refs. 3-6). The latter assume that steady

and unsteady disturbances due to airfoil shape and motion are small and very small,

respectively, relative to the uniform stream speed. As a result, the unsteady

equation formally applies only in the limit of low-frequency airfoil motions

(c.f. the Appendix to this report). In the frequency-domain calculations of

Refs. 3-5, the unsteady equation is solved in nonconservative form, but shocks are

"captured" as smooth rapidly varying regions in the finite difference approximation

and shock motions are ignored. In the time-domain calculation of Ref. 6, the

unsteady transonic equation is solved in conservative form. Shocks are "fitted"

as discontinuities, and shock motions are accounted for; however, an iterative,

time-marching, procedure is required to achieve unsteady solutions.

In this report the unsteady transonic aerodynamic model and numerical

approximation are described, and numerical results are presented and evaluated

for cascades of vibrating, sharp-edged, douhle-circular-arc (DCA) airfoils, with

mean positions aligned with the steady flow. This simple blade geometry has been

selected so that at this, the first stage of our unsteady transonic investigation, we

could concentrate on the transonic aspects of the problem _.e., local supersonic

regions and shock discontinuities) without having to deal with the complications

introduced by mean incidence or steady flow stagnation at blade leading and

trailing edges. At present the unsteady transonic numerical approximation has

6
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been implemented only on the cascade mesh. Our experience indicates that shock-
jump conditions cannot be accurately modeled on this mesh, and hence, although the
intent is to eventually fit shocks into the unsteady solution, the transonic
results presented here have been determined by shock capturing. In addition,
cascade mesh solutions deteriorate in the vicinity of a shock with increasing
blade stagger due to a greater number of axial mesh lines crossing the shock.
Work is currently underway to implement the numerical approximation on a detailed
local mesh containin_ the shock to permit accurate shock fitting and an
improved resolution of unsteady flows past staggered cascades.
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THE POTENTIAL FLOW AERODYNAMIC MODEL

Basic equations which describe the flow past a finite-deflection, two

dimensional, oscillating cascade of airfoils are presented below. In the present

effort we seek solutions to the unsteady boundary value problem for transonic flows;

i.e., flows with subsonic inlet and exit conditions, but with embedded supersonic

regions adjacent to blade surfaces. In the following discussion all quantities

are dimensionless. Lengths have been scaled with respect to blade chord, time

with respect to the ratio of blade chord to upstream free-stream speed, and

pressure with respect to the upstream free-stream dynamic pressure.

We consider adiabatic flow, with negligible body forces, of an inviscid, non-he_

conducting, perfect gas past a two-dimensional oscillating cascade (Fig. i). The

mean or steady-state positions of the blade chord lines coincide with the line

segments mG x _< x ! 1 + mGx, y = mGy, m = 0 ± l, ± 2, ., where m is a blade

number index, and G x and Gy are the x and y components of the cascade gap vector
G, which is directed along the locus of blade leading edges with magnitude equal

to the blade spacing (Fig. i). It is assumed that in the absence of blade motions

uniform subsonic inlet and exit conditions exist far upstream and downstream of the

blade row. The blades are undergoing identical harmonic motions at frequency, m,

and with constant phase angle, o, between the motion of adjacent blades. Blade shap_

and orientation relative to the inlet free stream and the amplitude, frequency, and

mode of the blade motion are assumed to be such that the flow remains attached to

the blade surfaces. Thus, thin vortex sheets (unsteady wakes) emanate from the

blade trailing edges and extend downstream. In addition, for sufficiently high

subsonic inlet conditions, local supersonic regions which terminate at moving

shocks will occur adjacent to blade surfaces.

Time-Dependent Full-Potential Formulation

Equations governing the fluid motion can be derived from the integral conservatl

laws for mass, momentum and energy, and the thermodynamic equation of state. These

integral laws provide corresponding differential equations in regions of the fluid

where the flow variables are continuously differentiable and "jump" conditions at

surfaces across which (in the inviscid approximation) the flow variables are dis-

continuous; i.e., shocks and blade wakes. In continuous regions of the flow the

energy equation can be replaced by the requirement that the entropy, S, following

a fluid particle must remain constant; i.e., _S/Dt = 0 (Ref. 29). In general, the

discontinuous changes in the flow quantities across shocks are proportional to the

shock strength, but the increase in entropy across the shock is proportional only

to the third power of shock strength (Ref. 30). Thus for shocks of weak to moderate

strength it is a reasonable approximation to neglect changes in entropy across the

shock. With this approximation, the uniform undisturbed flow far upstream of the

cascade will produce an isentropic (S = S__) and hence by the Helmholtz theorem, an

irrotational, time-dependent flow field.

8
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Governing Differential Equation

The mass conservation law provides the following conservative form of the

differential equation

+v. o (1)
Ot

where t is time, governing the fluid density, p,and velocity potential,@. In addition,

after substituting the isentropic relations into the differential form of the momentum

conservation law and integrating the resulting expression, the following relations

(Burnoulli's equation) between the flow variables are obtained

,_(Y-_):(yM_2= _,/2)(y-z)/y: (M__ _)2

:,_(,_,,;o{,,+
(2)

Here y is the specific heat ratio of the fluid, M is the Mach number of the undisturbed

or steady flow, P is the fluid pressure, A is the speed of sound propagation, and

the subscript -_ refers to the upstream free-stream condition. If the dependence of

the density on the velocity potential is explicitly included, using Eq. (2), the

potential equation, Eq. (I), can be written in the form

_2 V25 = Sit+ 2V$'Vgt + V$" V(V$)2/2 (3)

Equation (3) is the nonconservative form of the differential equation which governs

the time-dependent velocity potential in continuous regions of the flow. Since, by

assumption, unsteady disturbances are produced solely by the blade motion, the

admissable solutions of either Eq. (i) or Eq. (3) for the present application are

those in which far-field acoustic energy radiates away from the blade row. Blade

motions are then classified as subresonant if acoustic energy attenuates in the far

field, or as superresonant if acoustic waves persist far upstream and/or downstream

of the blade row.

Surface Conditions

The foregoing equations are supplemented by boundary conditions on moving blade

surfaces, _m' and jump conditions at moving blade wakes,C_ m, and at moving shocks

_&m,., where the subscript + or - refers to a shock impinging on the upper or

lower surface, respectively, of the mth blade. The vectors _, +n, and _ are introduced

below in conjunction with the surface conditions. The relative displacement vector,

_, measures the displacement of a point on the' instantaneous position of a surface

(blade, {vake, or shock) relative to its mean or steady-state position. The unit
-

vectors n and T are normal and tangent, respectively, to a surface and directed such tha

n x T = ez points out from the page. The unit normal vector is directed outward from

blade surfaces, upward at wakes, and downstream at shocks.

9
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For attached flows, the normal component of the fluid velocity must equal

the normal component of the surface velocity at blade surfaces (flow tangency); i.e.,

(v$ 7) a_ _• _ -- " n )

at

Due to the assumed form of the blade motions

-- -- rt^l-"--"e i(Wl ÷ m_)(_(X+ m_,t) :

on I_ m (4)

X on B (5)

where the vector r is prescribed and defines the amplitude and direction of blade

displacements, X is a position vector in the space-fixed x,y-coordinate frame, and

B denotes the mean position of the zeroth or reference blade. For rigid blade

motions

"_(_) = "_ + _ X R-p- (I- COS a)-Rp (6)

where _ defines the amplitude and direction of blade translations, _ defines the

amplitude and direction (positive counterclockwise) of blade rotations, and _p is

a position vector extending from the mean position of the reference-blade axis of

rotation to points on the mean position of the reference blade surface. The

components hx, hy and _ of the vectors h and _ are, in general, complex to permit

phase differences between the translations in the x and y-directions and the rotation

These rigid two-dimensional motions model bending and torsional vibrations of

actual rotor blades.

The blade wakes are material surfaces; i.e., a fluid particle on the wake

always remains there. Hence, Eq. (4) also applies at wake surfaces. However, since

the wake displacement vector is unknown apriori_"jump" conditions are usually

imposed at wake surfaces. It follows from the foregoing kinematic condition and

the integral conservation laws that the component of fluid velocity normal to the

wake and the thermodynamic properties of the fluid must be continuous across thin

vortex wakes. Thus, the conditions

EV_-"_= E_]:O , on q_m (7)

applyat wakesurfaces,whereE denotesthedifference(upperminuslower)in a
quantity across a wake. Since'the instantaneous wake locations,_m, are unknown,

the usual practice is to apply these continuity conditions on prescribed surfaces

which lie close to the actual wake positions.

At shocks the integral form of the mass conservation law provides the following

condition

:o , on

10
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where _ _denotes the jump or difference (downstream minus upstream) in a quantity

across a shock. A second shock-jump condition follows from the conservation

of momentum tangent to the shock and requires that the component of fluid velocity

tangent to the shock, or after integrating along the shock that the velocity

potential, must be continuous across the shock; i.e.,

on ¢z_&m,_ (9)

Equation (9) also represents the requirement that no vorticity be produced at the

shock. In isentropic flow, if mass conservation is required, then neither the

normal component of fluid momentum nor energy can be conserved across the shock.

This completes the formulation of the boundary value problem for the velocity

potential, _. The problem posed is a formidable one consisting of a nonlinear,

time-dependent, partial differential equation along with conditions imposed on moving

blade, shock and wake surfaces, in which the instantaneous locations of shock and

wake surfaces must, in principle, be determined as part of the solution. Even if

accurate solution procedures could be developed for this problem, they would be of

limited value to the designer because computing time requirements would make it

prohibitively expensive to obtain the unsteady response predictions required for

detailed flutter calculations. Thus the approximation described below has been

developed to provide a useful analytical model for turbomachinery aeroelastic

investigations.

ii
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THE SMALLUNSTEADYDISTURBANCEAPPROXIMATION

If the amplitude of the blade motion is small; i.e., l_l_(e) where e is a
small parameter, a perturbation analysis can be applied to replace the foregoing
nonlinear, time-dependent, boundary-value problem by two tlme-independent problems
for the zeroth-order or steady flow field and the first-order, harmonic (in time),
unsteady flow field. In addition, within the first-order approximation, unsteady
boundary conditions can be applied at the mean positions of blade, Bm, wake, Wm,
and shock_Shm,±, surfaces and blade pressure distributions and aerodynamic response
coefficients can be evaluated in terms of information supplied at blade mean
positions. The mean positions of the blade wakes and the shocks are determined by
the steady solution, which is assumed to be known in the present study.

Flow quantities are first expanded in asymptotic series in e; e.g.,

A i
_(_,t) = _ _J_j(_,t) = _(_) + _(_)ei_t+ _(()2 (io)

j=o

where _ is a position vector measured relative to body-fixed Cartesian coordinates

which coincide with the space-fixed x,y-coordinates when the reference blade

(m = 0) is in its mean position. In addition, Taylor series expansions; e.g°,

where_ denotes a mo%ing blade, wake, or shock surface, S denotes the mean position

of this surface and _ defines the displacement between corresponding points on the

moving and mean surfaces, are applied to refer boundary conditions to the mean

surface positions. Unit tangent and normal vectors at a point on a moving surface

are related to the unit tangent and normal vectors at the corresponding point on the

mean surface by the relations

(12)

= + ×

In particular, for the rigid blade motions defined by Eq. (6)

r_ = r s-an s e i_t+ (D(E z)

"_ ='ffs + a'fs ei"t+ ©(ez)

(13)

12
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After substituting the foregoing series and surface vector relations into the full
governing equations, equating terms with like powers in E, and neglecting terms of

second and higher order in e, nonlinear and linear, variable-coefficient, boundary-

value problems are obtained, respectively, for the zeroth- and first-order flows.

As c + 0 the blade and wake surfaces collapse to their mean positions. Hence,

the zeroth-order term in the power series expansion, Eq. (i0), is the velocity

potential, _ (_), due to steady flow past a stationary cascade. The cascade geometry,

the prescribed form of the blade motion, and the linearity of the first-order

equations require that the first-order or unsteady potential be harmonic in time

(i.e., _i (_' t) = _ (_) e i_t) and that both the steady and first-order unsteady

flows exhibit blade-to-blade periodicity; i.e.,

_(_)=_(_+m_)--m__= ._ (14)

_('_) = _(_+ m_")e-im_

The periodicity conditions permit numerical solutions for the steady and unsteady

flows to be determined in a single, extended, blade-passage region of the cascade

(e.g., the region_in Fig. 2). In addition, unsteady quantities at the mth blade,

wake, or shock surface can be evaluated in terms of information provided at the

reference (m = 0) blade, wake, or shock surface, respectively. For convenience

the subscript m will be omitted below when referring to a reference surface.

The Steady Boundary Value Problem

Equations governing the steady flow follow from Eqs. (i) through (4), (8), and

(9), after replacing the time-dependent flow quantities, $, P, p, and A, by their

zeroth-order or steady flow counterparts, _, P, p, and A, and omitting time-

derivative terms. Thus the differential equation

where

/_{Y-I)= (7,M2_.= p/2)(Y-I)/)" = (M_=A} 2

=1 Yf' = - ,]= '+
- I+ (7"-- I) M2/2

(15)

(16)

applies in continuous regions of the steady field.

attached at blade surfaces; i.e.,

In addition, the flow remains

V¢_.-_--o , on Bm (17)

13
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and mass and tangential momentumare conserved across shocks; i.e.,

and

EP" ]1 " Shm,,"_7_ • n =0 , on _ (18)

IT,I],-II,]]:o. on Shm,__ (19)

Wake jump conditions are automatically satisfied in the two-dimensional steady

problem since the zeroth-order flow is continuous downstream of the blade row.

Finally, steady subsonic velocities are uniform far upstream and downstream of the

blade row; i.e.,

re= v_ , _-- T-oO (2O)

where _ is the axial coordinate in Fig. I. In general, the inlet Mach number and

flow direction are prescribed along with either the exit flow direction or the

imposition of a Kutta condition at blade trailing edges. The exit Mach number is

then determined by a global mass balance.

The Linear Unsteady Problem

It follows from the potential, Eq. (i) and Bernoulli, Eq. (2), equations and

the asymptotic expansions for the flow variables (e.g., Eq. (i0)) that the linear

unsteady flow is governed by the conservative form differential equation

at

and the unsteady density, p, pressure, p, and speed of sound, a, are related by

ply: y-I P/P: (_-I)O/A=-A -2 DS'--'_Dt

D S
where_ is a mean-flow convective derivative operator; i.e.,

Dt

Ds = a__. + V¢ ._/= i(., + re.
Dt at

(22)

(23)

Upon substituting the steady, Eq. (16), and unsteady, Eq. (22), Bernoulli relations

into Eq. (21); or alternatively, the series expansion, Eq. (i0), into the time-

dependent potential equation, Eq. (3), and performing some algebra, the following

14
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nonconservative differential equation for the unsteady potential is obtained

2
_ DS# DS____

(24)

or

(25)

+ [_Z_ ioa(7_l)_72_]_- O

The principal part of the unsteady differential equation is given by tile first two

terms in Eq. (25).

Surface Conditions

Similarly, conditions on the unsteady flow at blade, wake, and shock mean

positions are obtained by substituting the asymptotic and Taylor, Eq. (ii), series

expansions and the surface vector relations, Eq. (12), into the time-dependent flow

tangency, Eq. (4), wake-continuity, Eq. (7), and shock-jump, Eqs. (8) and (9),

conditions. After a substantial amount of straightforward algebra and the appli-

cation of the steady surface conditions, Eqs. (17) through (19), the following

conditions on the linear unsteady flow are determined. The first-order flow

tangency condition has the form

V@-_= [iJ +(V_.T)(T.V)T-(T.V)V_] ._e imp, on B m (26)

For rigid blade motions, this reduces to

V_.n=

=[i_T- v(T.v®)].-_e_m_, on8m
(27)

The first term on the right hand side of Eq. (27) is the velocity of the blade

motion. The second term accounts for the effects of blade rotation relative to

the mean flow and of motion through a spatially varying mean velocity field. Since

the steady flow is continuous downstream of the blade row, the conditions of

continuity of normal velocity and pressure across blade wakes (c.f. Eq. (7)) reduce

to

1I,,4]- II- ,ll=o, on Wm (28)

15
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where the mean positions, Wm, of the unsteady wakes are assumed to coincide with the
downstream, steady-flow, stagnation streamlines.

For shocks with negligible curvature, conservation of mass and tangential
momentumrequire that

an _n : 0 , on Shm,t

and

(29)

_'_ _ +e r _n = _ +elmEr n =0, on Shm,t (30)

respectively, where _ • _ = re i(mt+m°) is the shock displacement in the direction

normal to the shock. Conditions (29) and (30) provide two relations for determining

the jump in the unsteady potential across the shock and the shock displacement. For

normal shocks, i.e., _ ISh _ _, it follows from the zeroth-order continuity
equation, Eq. (i), tha_ _ _n = O , and therefore

E/°_n + P_n_ = iwreim°" _P]]=- '_ EP]] _'_]]/E_n]], on Shin,*_ (31)

After substituting the first-order Bernoulli equation, Eq. (22), into Eq. (31),

the following implicit expression for the jump in the unsteady potential across the

shock is obtained

(32)

+ (,.n)_n/,'_]-- _,.n_ I . on Shin,±

where the p and W are known from the steady solution.

Unsteady Far-Field Solutions

To complete the specification of the unsteady boundary value problem, conditions

far upstream and downstream of the blade row must be established. In general,

unsteady disturbances do not attenuate far from the blade row, and hence, it is

difficult to place explicit far-field conditions on the unsteady potential. Instead,

analytic far-field solutions to the unsteady differential equation, Eq. (24), have

been determined for uniform subsonic inlet and exit conditions. These analytic

solutions can be matched to a near-field numerical solution at finite distances

16
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upstream and downstream from the blade row (e.g., at 6 = 6¥ in Fig. 2). It is
assumed that for 6 < 6_ and 6 > 6+, the departure of steady flow quantities from
their free-stream values is of @(_); e.g.,

IT(f}- I- @(El

The unsteady potential is continuous far upstream of the blade row (i.e.,

= _c for _ < __) and has both continuous and discontinuous components downstream

of the blade row (i.e., _ = _c + _d for _ > 6+). Th_ continuous potential accounts

for acoustic wave propagation into the far-field. Fourier methods can be used to

provide expressions for this component of the far-field potential in terms of the

cascade axial and tangential coordinates _ and D (Fig. 2). It follows that (c.f.,

Refs. 17 and 31)

I:-= J'_" exp(iqi'9) ' -

where the coefficients, bj,$, are obtained from the relation

(34)

bj,; = G-I jr_+G _c(_,_)exp(-iqj_)d_, _=_ (35)

The discontinuous component of the unsteady potential far downstream results from

the counter vorticity shed from the trailing edges of the blades and convected along

the blade wakes. A closed form solution (Refs. 17, 31) for this potential has been

determined and is given by

_d(r,n)= _(_._.) F(n)exp(-i_T/V=), _ _. (36)

where T and n are Cartesian coordinates with the T-axis coinciding with the far-

downstream, zeroth wake (Fig. 2). The constants qj, Xj,_ and the function F(n)
in the foregoing equations are defined explicitly in Ref_ 17.

Aerodynamic Response Coefficients

Solutions to the steady and unsteady boundary value problems are required to

determine blade pressure distributions and aerodynamic force and moment coefficients.

The pressure at the mth blade surface is given by (c.f. Eq. (14))

P(Bm= PB + P(Bei(_t*mcr) + @((Z) (37)
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where P and peimt are the zeroth-(steady) and first-(unsteady) order components of
the fluid pressure, and • and B denote the moving and mean reference blade surfaces,
respectively. After expanding the pressure P(X, t), in the manner indicated by
Eqs. (i0) and (ii), it follows from the steady and unsteady Bernoulli equations that

and

2 -_ 2¥/(Y- _)
PB = 2(YM-=) (M-mA)B

1:)= [-- 2(M_ =A) 2/(y-') DS---_--_D1+ _" _r)P]B

=-2(M_=A) z/(Y-') [-_tq_+ (T.V)(V_)Zl2]B

(38)

(39)

Thus the steady and unsteady components of the pressure acting on a moving blade

are evaluated in terms of information supplied at the mean position ofsurface, e m'

the reference blade, B. The first term of the right-hand-side of Eq. (39) is the

unsteady pressure at the mean position of the blade and the second is due to motion

through a spatially varying steady pressure field.

and

The force and moment coefficients acting on the mth blade; i.e.,

"_Fm = CF + CF ei(_f+rn°r)+ _)(E 2) (40)

A --
CM m CM + CM e i(_t+rnor) + _)(E z) (41)

are determined by simple integrations over the mean position of the reference blade.

After some algebra it follows that the steady, _F and CM, and, for rigid blade

motions, the unsteady, _F and CM, force and moment coefficients are given by

and

cM : Ps" p" (42)

.->

where d_ is a differential vector tangent to the mean blade surface. It should be

noted that the moment is taken about the moving pitching axis. The unsteady force
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and moment coefficients are the important results of an aerodynamic analysis in-
tended for bending or torsional flutter predictions. Knowledge of these coefficients
permits the evaluation of aerodynamic work per cycle and/or aerodynamic damping
(Ref. 32) either of which can be used to determine whether the airstream supports
or suppresses a prescribed blade motion.
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THEUNSTEADYNUMERICALSOLUTIONPROCEDURE

The solution procedure will be outlined for flow past a cascade of sharp-
edged airfoils with mean positions aligned with the steady flow. Thus unsteady
phenomenaassociated with leading edge bluntness, mean incidence, and mean flow
stagnation (c.f. Refs. 23 and 24) are omitted from present consideration so that
attention can be focused on the transonic aspects (i.e., local supersonic regions
and shock discontinuities) of the unsteady problem. A numerical resolution of the
linear, variable-coefficient, unsteady, boundary-value problem is required over a
single, extended, blade-passage region of finite extent (Fig. 2). The unsteady
differential equation must be solved in continuous flow regions subject to boundary
or jump conditions at the mean positions of the blade, wake and shock surfaces.
Blade mean positions are prescribed, and the mean position of wake (i.e., the downst_
stagnation streamlines) and shock surfaces are determined as part of the steady
flow solution. Finally, the near-field numerical solution must be matched to far-
field analytical solutions at finite distances (_ = _:_) upstream and downstream from
the blade row to account for acoustic wave propagation into the far-field and
vorticity convection along the far-downstream blade wakes.

For the numerical resolution of the unsteady transonic problem various
components must be selected or constructed. These include the computational
coordinate system, the discrete domain (or calculation mesh), differencing
strategies for mixed flows, the approximating algebraic equations, and the solution
procedure. These components are generally not independent of each other and it is
important that the choice of one does not place overly restrictive constraints on
the others.

Coordinate System and Calculation Mesh

The coordinate system selected for the present study is the _, n-Cartesian
system where the _ and n-coordinate axes are directed along the cascade axial and
circumferential directions, respectively (Fig. i). For sharp-edged blades the
origin of this system coincides with the leading edge of the reference blade
(i.e., m = 0). For Cartesian independent variables, in this case _ and q, the
unsteady differential equation, (Eq. 24), can be written in the form

5
_0_ = _ C_V _= 0 (44)

where the linear differential operators Cmv are defined by

(45)
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and the variable coefficients C_ depend on the underlying steady flow; i.e.,
C o= _2_i_(y_l)V 2

Cl= - [2i_ + (7-1)72_]_ - 27_.V_{
(46)

C 2= - [2i_+ (7_,)?2_],_

c'=-
Cascade flows place stringent requirements on computational grids. In particular,

it is desirable to have grid lines parallel and normal to solid surfaces and surfaces

of discontinuity so that boundary and jump conditions can be implemented accurately.

Moreover, the mesh should be periodic to facilitate the implementation of cascade

periodicity conditions and, for unsteady flows, one set of far-field mesh lines

should be parallel to the blade row to facilitate the matching of analytical far-

field and numerical near-field solutions. Further, it should be possible to con-

centrate mesh points at the appropriate density in critical regions of the flow,

such as near blade surfaces and shocks, and near blade leading and trailing edges.

Finally, the mesh should not be highly sheared and mesh aspect ratios should not

depart too far from one, as this tends to degrade solution accuracy and, in some

cases, lead to numerical stability problems. It is usually not possible to obtain

a grid which meets all of the foregoing requirements and, as a result, some

compromises have to be made (c.f. Ref. 21).

In the present study the basic approach is to capture large scale unsteady

phenomena on a rectilinear-type (cascade) mesh of moderate density which covers an

extended blade-passage region, and then to match the cascade solution to local

solutions determined on dense grids covering limited regions of high velocity

gradient; for example, near a rounded blade leading edge (Refs. 23, 24) and near

shocks. To date, our unsteady transonic calculation procedure has only been imple-

mented on the cascade mesh, but work is currently proceeding on the development of

a local unsteady calculation for the resolution of shock phenomena. The cascade

mesh used here is the periodic and body-fitted, but nonorthogonal, one shown

schematically in Fig. 3. It is composed of axial lines (_ = constant), which are

parallel to the blade row making the mesh periodic, and "tangential" curves which

are percentile averages of the upper and lower boundaries making the mesh body fitted.

This mesh facilitates the implementation of blade and wake boundary conditions as

well as cascade periodicity conditions and the matching of analytical and numerical

unsteady solutions in the far-field. However, the unsteady flow in the vicinity of

rounded blade edges or in the vicinity of shocks cannot be accurately resolved.

Differencing Strategies for Transonic Flow

Following the ideas of Murman and Cole (Refs. 27, 28),the plan is to distinguish

between regions of subsonic flow where the governing differential equation is ellip-

tic, sonic flow where it is parabolic, and supersonic flow where it is hyperbolic,
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and to use a difference schemewhich is sensitive to the local character of the
unsteady differential equation. To accomplish this we first apply the rotated
differencing concept introduced by Jameson (Ref. 26). At each point of the discrete
domain the unsteady equation is expressed in canonical form; i.e.,

(47)

where
_,_ = A2(I-M2)(_ss

....

(48)

and S and N are local Cartesian coordinates aligned with and normal to, respectively

the local steady flow direction. In Eqs. (47) and (48) the principal part of the

unsteady differential equation is shown explicitly and the dots refer to the remain-

ing terms (which are left in their original fo_). It is now clear that the local

type of the unsteady equation depends on the local Mach number of the steady flow.

Since the $, q-coordinates at a given point Q are related to the canonical coordi-

nates at this point by the transformation

It

_i and _2 can be expressed in the following equivalent forms

_I_ A2(I- 2 (I-M2),.,.Z

=A2 + ....

(49)

(5O)

It is now a simple matter to construct a suitable type-dependent differencing

scheme. The linear operator _2 is always approximated by central difference

expressions, but the difference approximation to the operator _i will depend on the

local steady Mach number and hence, the local type of unsteady differential equa-

tion. Thus if Mi_l, j and Mi, j are both less than one, where i and j are grid

point indices for the axial and tangential mesh lines, respectively, the flow is

locally subsonic (elliptic) and

Mi,j <1 , Mi-i,j < I
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where L is a central difference operator. If Mi_l, j < 1 and Mi, j > I, the flow is
accelerating through sonic velocity (parabolic) at the point (i,j) and_l_ is set
equal to zero; i.e.,

Mi_l, j < I,Mi, j > I

_,@ = 0 (52)

If Mi_l, j > 1 and Mi, j > i, the flow is locally supersonic (hyperbolic) at (i,j)

and_l_ is approximated by a retarded or upwinded difference expression

Mi, j-I >1, Mi,j >1

i.e., a central difference expression evaluated at the previous upstream point on

the jth tangential mesh line. Strictly speaking, at supersonic points the differ-

encing should be retarded along both tangential and axial mesh lines, but since the

tangential mesh lines are closely aligned with the flow direction (except at rounded

blade edges), it should be sufficient to upwind difference only along tangential

mesh lines. Finally if Mi_l, j > 1 and Mi, j < i, there are two possibilities: a)

if a shock is to be fitted into the unsteady solution, shock-jump conditions are

imposed at the point (i,j) with one-sided difference expressions used to approxi-

mate normal (to the shock) derivatives of the unsteady potential on either side of

the shock, and (b) if no shock occurs or if unsteady shock phenomena are to be

captured; i.e., the differential equation is solved through the shock, than subsonic

differencing, Eq. (51), is applied at the point (i,j). Thus

Mi-l,i > I, Mi, j < I

(a) shock fitting (54)

Algebraic Approximations

Finite difference approximations to the various linear operators appearing in

the unsteady boundary value problem are determined using an implicit, least-squares

interpolation which is applicable on arbitrary grids. Consider a linear differen-

tial operator _which operates on a constant by multiplying that constant by q0.

_ is to be approximated at the mesh point Q0 in terms of the values of _ at Q0 and

at certain neighboring mesh points, QI' ---, QM, which, with Q0 are called a neigh-

bor set. Neighbor sets are defined as shown in Fig. 3, i.e., in a "centered"

fashion for interior points of the solution domain and in a "one-sided" fashion for

points on a blade, wake or shock surface. Quantities subscripted with 0 or m are

evaluated at the corresponding neighbor set member. The approximation is developed

in terms of an implicit interpolation of the form
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N
E >,ofn-
n=l "" ""

(55)

where the fn are prescribed interpolating functions which vanish at Q0 (homogeneous

polynomials, for instance) and the yn are interpolating coefficients which depend

on local values of _ and are determined by the specific interpolation used. An

algebraic approximation to (_)0 = #(Q0 ) is then simply obtained by replacing

with G0 + F, i.e.,

•" (_+)0 _ _(+0 + F)O= qO+o + (_f)_,.y (56)

whereof is the N × 1 vector with components _fn.

For the present application the interpolating functions are chosen to be the

polynomials

N= 5: fl= _' f2 = _, f3= _f2 f4= _. ST ' fs= _2 (57)

where _ = _ - _0,652 = (_-_0)2 etc. The interpolating coefficients must then be

identified. With eight neighbors but only five interpolating functions, it is

impossible to define y such that F implicitly agrees with _ at all neighbors.

Least-squares techniques provide a formal method for defining the interpolating

coefficients from the available data regardless of the geometry of the neighbor set.

A measure of the error in replacing _ with its interpolate F in Eq. (55) is

e(,'Y)- Z Wm fm Y fro- BC_m (58)
_' m = I -I I

where the overbar indicates complex conjugation and the W m are chosen to give proper

importance to the various neighbors. In practice Wm is usually given by

Wm: I/IQm-- QO j (59)

but it may be set to zero if the corresponding neighbor is to have no influence.

Note that since _ is complex and the fn are real, the yn must be complex. The

error function is minimized by setting its derivatives with respect to the real

and imaginary parts of the Tn equal to zero. There results the complex linear

system
N M M

-k -k B_m_ k=l,.. ,NZ (Z Wmf_fm)yn= _ Wmfm . (60)
n=l m=l m=l
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which can be written in compact form as

eZ= (61)

The N × N matrix _ and the N x M matrix _ are given in terms of the M x N matrix

= (fk) and the M × M diagonal matrix, W = diagonal (WI, .... Wm) by

= _W_ _ = _W

where the superscript * indicates conjugate transposition. Thus

(62)

Z = (@-'(B)_ = e_ (63)

where O is an N x M matrix. By combining Eqs. (56) and (63) the approximating

difference operator can be defined in terms of the local values of _ by

(@96)o = (L_) ° -- qO_o + (,_f)T es_

M

: qO + l Bm( m- %1
m:l

(64)

where the difference coefficients, _m, are given by

_T= (_1,---,_M) _ (_f)_e (65)

The foregoing difference approximation is flexible enough so that neighbor sets can

be adjusted to avoid differencing across singularities - an important feature for

the linear unsteady problem - and across shocks. In addition, both differential

equation and surface conditions can be simultaneously approximated at surface

points. The latter strategy can significantly improve the diagonal dominance of

the resulting set of algebraic equations and the accuracy of the calculation in

regions where mesh aspect ratios are abnormally large or small. The reader is

referred to Refs. 22 and 23 for further details on this algebraic difference

approximation.

Solution Procedure

At field points the unsteady differential equation, Eq. (44), is approximated

using centered neighbor sets (Fig. 3) along with the type-dependent differencing

strategies of Eqs. (51) through (54). For points on the upstream periodic boundary,

values at neighbors above the mesh region are related to _ values at points within

the mesh region by the periodic condition, Eq. (14). On the lower periodic boundary
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the periodic condition is applied directly, since to approximate the field equation

on both upper and lower periodic boundaries would be redundant. For points on the

far-upstream or far-downstream boundaries (_ = _$ in Fig. 2) _ values at neighbors

upstream or downstream, respectively, are related to _ values on the boundaries using

the far-field analytic solutions, Eqs. (34) and (36), with the Fourier coefficients

being evaluated usin_ Eq. (357. The infinite sum in Eq. (34) is truncated after a

few terms - usually three - in each direction, and the integral in Eq. (35) is

approximated using trapezoid rule quadrature. At blade and wake points the flow

tangency condition, Eq. (26), and the wake continuity conditions, Eq. (28), are

approximated, respectively, using one-sided neighbor sets. At both blade and wake

points, the difference equations can be constrained so that the field equation is

also satisfied (c.f. Ref. 22). Finally, when shocks are fitted into the unsteady

solution, the shock-jump conditions, Eqs. (29) and (30), or for normal shocks,

Eq. (32), are imposed using first-order accurate, one-sided differences to approxi-

mate derivatives normal to the shock.

Let _i be a vector of _ values on the ith axial mesh line. Because: (i)

neighbor sets of points on the ith line include only points from lines i-l, i, and

i+l; (2) the algebraic approximation to the unsteady differential equation involves

only neighbor sets centered on the lines i and i-l; (3) first-order accurate

difference approximations are used to fit shocks; and (4) the cascade mesh is

periodic; the system of linear algebraic equations, which approximate the unsteady

boundary value problem, have the following block quadridiagonal form.

CI(_) I + DIll) 2 - F I

(66)

Note that A i _ 0 at subsonic (and at sonic) points, except when the ith axial mesh

line is immediately downstream of a fitted shock. With this structure the system

can be solved directly and efficiently using Gaussian elimination. The sub-

matrices Ai, Bi, C i and D i are sparse being basically scalar tridiagonal. This

feature can be taken advantage of to improve computational efficiency during the

forward elimination phase of the solution (Ref. 33).
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NUmeRICAL RESULTS

The foregoing analysis has been applied to determine unsteady subsonic and

transonic flows past vibrating cascades of sharp-edged, double-circular-arc (DCA)

airfoils with blade mean positions aligned with the steady flow. The zeroth or

reference blade surface is defined by the equation

Y_.( x ) = sgn (H _)

- O,

[IH*_I- R_.+

H,=O

JRf -- (x- 0.5) 2 ], H.t _:0
(67)

where H is the y-coordinate of the surface at midchord, R is the radius of curvature;

i.e.,

R= (H2+ O.25)/2lHI (68)

sgn (y) = ± 1 for H _ 0, and the subscripts + and - refer to the upper (suction)

and lower (pressure) surfaces of the blade. For purposes of comparison, subsonic

flows past vibrating flat plate (H = 0) cascades have also been calculated. In

this case @ = x and the unsteady equations reduce to those of classical linear

theory.

In this report unstaggered (®= 0 deg.) and staggered (with _= 45 deg.)

cascades with unit gap/chord ratio (G = i) of 5% thick, flat-bottomed, DCA

(H+ = 0.05, H_ = 0) and flat plate blades are considered. Unsteady surface

pressure (p_) and pressure difference (Ap) distributions, where

Ap(x): __('_)-- p_.,(_'): p_F(-_+'_)e-i° _ _o. ('_)
(69)

and aerodynamic lift (cL = cF - ey) and moment (CM) coefficients will be presented

for blades undergoing out-of-phase (o = 180 deg.), single-degree-of-freedom bending

(with hy = (1, 0)) or torsional (with e = (i, 0)) vibrations at prescribed fre-

quencies (m) and inlet Mach numbers (M_=). Corresponding exit Mach numbers (M_)

and inlet (___) and exit (_) flow angles are determined, as part of the steady flow

calculation, from a global mass balance and the application of a Kutta condition;

i.e.,

- I - I
V'dY B_ =-- v.d'_' ,B_.

X=O,I (70)
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at blade leading and trailing edges. When the imaginary parts of the bending or
torsional amplitudes are set equal to zero, the real and imaginary parts of the
response coefficients are in phase with blade displacement and velocity, respec-
tively. Further, the stability of single-degree-of-freedom bending or torsional
motions is governed by the sign of the imaginary part of the lift or moment co-
efficients, respectively. If Im{CLl< 0 for bending or ImlCM_ < 0 for torsion, the
airstream tends to suppress the motion, and hence, this motion is stable according
to linear theory (Ref. 34).

Steady Mach NumberDistributions

Full potential steady flows have been determined using the finite-area numerical
approximation developed by Caspar, Hobbs, and Davis (Ref. 35) for subsonic cascade
flows, and subsequently extended by Caspar (Ref. 36) for transonic flows. A steady
transonic solution is first determined on a cascade mesh (Fig. 3), and then the
cascade mesh solution is matched to a local solution determined on a dense mesh
(Fig. 4) which covers and extends well beyond the supersonic region. The solution
to the steady boundary value problem is taken to be the local solution in the region
covered by the local mesh and the cascade solution elsewhere. It should be noted
that with the numerical procedure of Refs. 35 and 36, the steady differential
equation is solved in conservative form and shocks are captured. However, due to
the fine resolution possible with the local mesh, it appears that steady information
upstream and downstream of the shock can be determined with sufficient accuracy to
fit shocks into the unsteady solution.

Surface Mach number distributions for the unstaggered and staggered DCA
cascades are shown in Figs. 5 and 6, respectively. For the unstaggered case the
prescribed inlet (and calculated exit) Mach numbers are 0.70, 0.72, 0.74, and 0.76°
Corresponding inlet and exit flow angles vary from _= t 4.3 deg. for M _ = 0.70
to ___= + 4.65 deg. for M _ = 0.76. At the lower Mach numbers, M__= 0.7,
M _ = 0.72, and M _= 0.74, the steady flows are continuous with peak Mach numbers
of .91, .95, and 1.01, respectively, occurring at midchord on the blade suction
surface. For M__ = 0.74 a supersonic region extends from 43% chord to 57%chord
along the suction surface. At the highest inlet Machnumber, M__= 0.76, a shock
impinges on the blade suction surface at a distance of 64% of blade chord from the
leading edge. The Mach number on the upstream and downstream sides of the shock are
1.157 and 0.935, respectively, and the supersonic region extends from 32%of chord
to 64% of chord on the blade suction surface.

For the 45 deg. staggered DCAcascade (Fig. 6) the prescribed inlet Mach
numbers are 0.8, 0.85, and 0.9. The corresponding exit Mach numbers and inlet flow
angles are 0.62, 0.64, and 0.65, and 4.4 deg., 4.5 deg., and 4.6 deg., respectively.
The exit flow angle is -2.0 deg. in each case. Continuous steady flows occur at
M_== 0.8 and M__ = 0.85 with peak suction-surface Mach numbers of 0.94 and 1.033
occurring at 32%and 30% of blade chord, respectively, downstream of the leading
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edge. At M _ = 0.85 the flow is supersonic along the suction surface from 22%to
42%of chord. For M__ = 0.9 the steady flow is discontinuous with the supersonic
region adjacent to the blade suction surface extending from 20% to 47% of blade
chord and terminating at a shock. Mach numbers just upstream and downstream of
the shock are 1.19 and 0.87, respectively.

Unsteady Solution Behavior

Unsteady solutions for the DCAand flat plate cascades have been determined
on a cascade mesh extending two axial chords upstream and downstream of the blade
row. The mesh consists of 15 tangential and from 75 to 81 axial lines, 31 to 37
of which intersect blade surfaces. A variable mesh spacing is used with tangential
mesh lines concentrated near b3ade and wake surfaces and axial mesh lines con-
centrated near blade edges and shocks as well as in supersonic regions. Steady
data, determined on a similar but much coarser cascade mesh and on a dense local
mesh (Fig. 4), are defined on the unsteady mesh using constrained, polynomial,
least-squares interpolations in an explicit manner.

Before proceding with the unsteady parametric studies, it is of interest to
illustrate several features of the unsteady numerical approximation. The reference
flow for this discussion is that past an unstaggered cascade of 5%thick, flat-
bottomed, DCAairfoils undergoing low-frequency (_ = 0.i) torsional oscillations
at an inlet Mach number of 0.76. The steady Mach number distribution on the
reference blade surface is shown in Fig. 5. To assess the impact of the type-
dependent and rotated differencing schemes, unsteady response predictions have
been determined first by using these strategies along with shock capturing, and
then by using subsonic or central differencing throughout the flow field. Unsteady
surface pressure predictions as determined by these calculations are depicted in
Fig. 7. The results clearly illustrate the need for applying the type-dependent
and rotated differencing in unsteady transonic or mixed flows. The central differ-
ence calculation provides a spurious surface pressure distribution over an interval
on the suction surface which extends somewhat beyond the supersonic region. How-
ever, the results of the two calculations are in reasonable agreement on the blade
suction surface upstream and downstream of the supersonic region and on the entire
blade pressure surface. This suggests that errors caused by inappropriate differ-
encing in supersonic regions and at sonic lines rapidly dampout with increasing
distance from the supersonic region.

The second aspect of the unsteady transonic solution to be discussed is the
effect of an inaccurate resolution of the steady flow on the linear unsteady calcu-
lation. For this purpose two different steady solutions for an inlet Mach number
of 0.76 have been used to define the variable coefficients in the unsteady equations.
The first is a solution determined on a cascade mesh alone and the second is the
steady solution depicted in Fig. 5, which has been determined on both a cascade and
a local mesh. The cascade mesh calculation predicts a continuous steady flow with
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a surface Mach number distribution which is similar to the continuous distributions
shown in Fig. 6, but with a peak Mach number of 1.12 at midchord on the suction
surface, and a supersonic region extending from 32%to 68%of blade chord along the
suction surface. Calculated unsteady pressures acting on the suction surface,
which correspond to the continuous and discontinuous steady solutions, are shown in
Fig. 8. Here, transonic differencing is applied and shock phenomena (when present)
are captured in the unsteady calculation. Note that the solid curves in Figs. 7
and 8 represent the sameunsteady solution. The unsteady predictions based on the
accurate discontinuous steady flow are well-behaved with a sharply-defined shock at
64% of blade chord, while those for the continuous steady input reveal violent
oscillations in a region centered near x = 0.64. Thus, the first-order perturbation
or unsteady solution indicates that a continuous zeroth-order or steady solution is
not physically realizable at M__= 0.76, since a small excitation will produce a
catastrophic change in the zeroth-order flow.

This feature of the linear perturbation analysis could be a useful one for
assessing steady solutions. For example, our steady solution, as determined on both
cascade and local meshes for M__ = 0.75, indicated a continuous or shock free flow
with a peak suction-surface Mach number of 1.06 at midchord. Unsteady predictions
for this case were then determined on cascade meshes with axial mesh spacings of
5%, 2.5% and 1.25% of blade chord near midchord. Unsteady predictions on the coarse
mesh followed reasonable trends with increasing (from 0.70 to 0.75) inlet Mach
number. However, with the finer mesh spacing (2.5% near midchord) the unsteady
pressure distribution for M__ = 0.75 exhibited large and erratic gradients in a
region centered slightly aft of midchord. This behavior was even more pronounced
in the results determined on the finest mesh and suggests that the continuous
steady flow predicted for an inlet Mach number of 0.75 is not stable or even
physically realizable.

The third feature of the unsteady numerical approximation to be discussed is
the effect of applying three different approximations at mesh points immediately
downstream of the shock. These include: (i) shock capturing; i.e., solving the
unsteady differential equation, Eq. (24), using a central difference approximation
for the streamwise second derivative of the unsteady potential (c.f. Eq. (54a));
(2) shock fitting assuming_that _he normal shock displacement (r in Eqs. (29)

henc_H = r _n_ is prescribed; and (3)shock fitting based onthrough (31)), and
the first-order jump condition for normal shocks, Eq. (32). It should be noted
that the unsteady solution based on the simple shock-jump condition, in which r and,
hence_is artificially prescribed, satisfies the requirement that no net vorticity
be prOdUced at the shock, but mass will not be conserved to first order across
the shock° Hence, solutions obtained with this approximation (as well as those
obtained by shock capturing) do not represent a uniformly valid first-order approx-
imation to the full, time-dependent, flow field.
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For the example, cascade, unsteady, surface pressures resulting from the shock-
capturing approximation are represented by the solid curves in Figs. 7 and 8,
while those determined by imposing the simple shock-jump condition with

=H_U = 0 and the normal shock-jump condition are represented by the solidr
_u

and _as-hed curves, respectively, in Fig. 9. Surface pressure predictions deter-

mined by using the simple shock-jump condition are in good agreement with those

determined by shock capturing with only slight differences occurring in the

immediate vicinity of the shock. However, the surface pressures determined by

implementing the formally correct first-order, shock-jump condition are sub-

stantially in error in the vicinity of the shock. Such errors can be attributed

to difficulties associated with accurately modelling the normal shock-jump condition,

particularly on a cascade mesh, and in accurately determining the differences

between values of the unsteady potential and unsteady velocity component normal to

the shock on the downstream and upstream sides of the shock. The first-order

shock-jump condition, Eq. (32), has been derived to provide a perturbation approx-

imation, in which both mass and tangential momentum are conserved to first order,

across shocks and, from which, shock displacements can be determined. However,

since reasonable numerical solutions have not been determined on a cascade mesh,

it appears that a basic prerequisite for assessing both the validity and the use-

fulness of Eq. (32) would be the implementation of the unsteady numerical approxi-

mation on a local mesh consisting of mesh lines normal and parallel to the shock.

Response Predictions for Unstaggered Cascades

Unsteady pressure difference and lift and moment coefficient predictions for

unstaggered DCA and flat plate cascades undergoing out-of-phase torsional oscillations

(with _ = (i,0)) about an axis at midchord are shown in Figs. i0 through 15. Un-

steady results are presented for low (_ = 0.i), moderate (m = 0.5) and high (m = 1.0)

frequency motions and for an inlet Mach number range extending from 0.70 to 0.76.

The high frequency vibration is the representative one for actual turbomachinery

configurations. Steady Mach number distributions for the DCA cascades have been

discussed above and are presented in Fig. 5, and the steady flow Mach number is

constant throughout the field for the flat plate cascades. Shock capturing has

been used in the determination of the unsteady solutions for the discontinuous

flows at M = 0.76

The unsteady pressure difference distributions due to the torsional motions

of the DCA blades (Figs. i0, 12, and 14) show a substantial variation with inlet

Mach number over the midsection (i.e., 30 to 70 percent of chord) of the blade,

while a similar variation in inlet Mach number has only a minor impact on the un-

steady pressure differences arising from the motions of the flat plate cascades

(Figs. ii, 13, and 15). Thus, a comparison of the unsteady pressure difference

distributions for the unstaggered DCA and flat plate cascades reveals the dramatic

effect of steady Mach number variations, caused by blade thickness and camber, on

unsteady response behavior, particularly at transonic Mach numbers. The low-

frequency, DCA, pressure-difference distributions (Fig. i0) show very reasonable
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trends with increasing inlet Mach number, but the calculated distributions at the
higher frequencies (Figs. 12 and 14) do not inspire a similar degree of confidence.
In particular, the real and imaginary pressure differences for m = 1.0 indicate a
possibly anomylous behavior in the vicinity of the shock. These distributions
remain relatively flat from the leading edge to approximately 60%of blade chord
and fall or rise extremely rapidly just upstream of the shock. This behavior near
the shock may be attributable to inaccuracies in the vicinity of the shock caused
by performing the unsteady calculations on a cascade mesh. This possibility will
be investigated in detail in our future research.

A detailed comparison of the DCAand flat plate response predictions for out-
of-phase, torsional motions reveals that stability is generally enhanced with
increasing frequency and Mach number. The only exception arises when the increase
in Mach number causes the flow pattern to change from a continuous one to a
discontinuous one. For the continuous flows past the DCAcascade at M__ = 0.70,
0.72, and 0.74, the imaginary component of the unsteady pressure difference achieves
relatively large values, which increase with increasing inlet Machnumber, upstream
of the point (midchord) at which the steady flow Mach number (Fig. 5) reaches a
maximumon the blade suction and pressure surfaces. This provides a larger clock-
wise moment (Im __{CM}< O) which opposes the blade motion, and hence, stability
enhancement both with increasing Mach number, and relative to the flat plate
cascades operating at the sameMach number. However, large positive unsteady
pressure differences occur just upstream of the shock, but behind the torsional
axis for the discontinuous flows at M_= = 0.76. These tend to destabilize the
torsional motions of the DCAblades at M__ = 0.76 relative to the situation at lower
inlet Mach numbers and relative to the torsional motions of flat plate blades
operating at the sameMach number.

Results for the unstaggered DCAand flat plate cascades have also been
determined for unit-frequency bending vibrations (Figs. 16 and 17). For clarity,
the real and imaginary pressure difference distributions acting on the reference
DCAblade are plotted separately in Fig. 16. The unsteady pressure difference
distributions due to bending behave in a qualitatively similar manner to the tor-
sional distributions. In particular, substantial differences occur between the DCA
and flat plate pressure difference distributions over the midsection of the blade,
especially at the higher Mach numbers (M__ = 0.74 and 0.76), and there is a sig-
nificant reduction in the stability margin for the DCAcascade as the inlet Mach
number is increased from 0.74 to 0.76. For the inlet Mach number range considered,
the predicted stability margin (Im {CL} < O) for unit-frequency bending vibrations
is greater for the flat plate cascade than for the DCAcascade.
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Response Predictions for Staggered Cascades

Unsteady response predictions for staggered (O= 45 deg.) DCAand flat plate
cascades undergoing out-of-phase torsional vibrations about midchord are shown in
Figs. 18 through 21. Results are presented for low (m = 0.i) and high (m = 1.0)
frequency motions and for inlet Mach numbers of 0.8, 0.85, and 0.9. The steady
surface Mach number distributions for the DCAcascade are depicted in Fig. 6, and
the unsteady predictions for the discontinuous flows at M_== 0.9 have been deter-
mined by shock capturing. A significant difference exists between the flows past
the unstaggered (c.f. Fig. 5) and staggered arrays of.DCA airfoils. In the former
case the steady Mach number has the samevalue at the inlet and exit, while in
the latter, the exit Mach number is substantially lower than the inlet Mach number.
This feature can have a substantial impact on the character of the unsteady flow
in the far field.

Pressure difference distributions due to the torsional motions of the staggered
DCAcascade (Figs. 18 and 20) show a substantial variation with inlet Mach number
over the forward-half of the blade. A similar change in inlet Mach number has only
a minor impact on the response to low-frequency, flat-plate vibrations (Fig. 19),
but a somewhat stronger impact on the high-frequency, flat-plate response (Fig. 21).
Unsteady shock phenomenafor the staggered DCAcascade operating at M__= 0.9 are
not as sharply defined as for the unstaggered DCAcascade operating at M_= = 0.76
(Figs. i0 and 14). This is because of the large angles which exist between the
axial lines of the (staggered) cascade mesh and the normal shock which impinges
on the blade suction surface resulting in some loss in numerical accuracy. Both
the low-frequency DCAand flat plate results indicate stability enhancement with
increasing Mach number, especially those for the DCAcascade. At low frequency
an increase in inlet Mach number leads to an increase in the imaginary component of
the unsteady pressure difference over the forward half of the DCAblade (Fig. 18),
in particular, just upstream of the shock, and contributes to an increased clock-
wise moment opposing the blade motion. A similar trend is observed in the low-
frequency flat plate results (Fig. 19), but here the increase in Im{Ap} and hence,
in the clockwise moment,are relatively small.

The high frequency DCAmotions (Fig. 20) at M = 0.8, 0.85, and 0.9 are
superresonant (i.e., acoustic energy persists in the far field). However, acoustic
waves only propagate into the far-upstream field since the waves traveling down-
stream at the lower exit Machnumber damp out with distance from the blade row.
The high-frequency, flat-plate motions (Fig. 21) are subresonant (i.e., acoustic
energy attenuates in the far field) for M_= = 0.8, and superresonant for M__ = 0.85
and 0.9. For the flat plate cascade, acoustic waves either propagate or attenuate
both far upstream and downstream of the blade row since the steady Mach number is
constant throughout the flow field. Thus, the unsteady flows at m = 1.0 past the
staggered DCAand flat plate cascades have a very different overall character;
however, this is not readily apparent from the surface information depicted in
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Figs. 20 and 21. The imaginary component of the unsteady pressure difference due
to the high-frequency torsional vibrations of the DCAcascade decreases substantiall_
over the forward 30%of the blade producing a decrease in stability margin as the
inlet Mach number increases from 0.8 to 0.85. Indeed, the response predictions
in Fig. 20 indicate that the DCAtorsional vibration at M__ = 0.85 is unstable.
There is an increase (relative to the M_ = 0.85 case) in the imaginary pressure
difference over the forward 20%of the DCAblade at M__= 0.9 which contributes
to a stable motion at this higher Mach number. Similar trends are observed in the
high-frequency, flat-plate results (Fig. 21), but here the torsional motions are
stable for the three Mach numbers considered.
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CONCLUDINGREMARKS

The aerodynamic analysis described in this report is being developed to predict
the flow past a finite-deflection oscillating cascade operating under subsonic inlet
and exit conditions. In previous studies unsteady subsonic solutions were determin-
ed on a cascade mesh for cascades of sharp-edged blades (i.e., flat plate, thin-
circular-arc, and double-circular-arc (DCA) airfoils) with blade mean positions
aligned with the steady flow (Refs. 17 and 22), and on a cascade mesh and a local
leading-edge mesh for cascades of blunt-nosed blades (i.e., NACA0012 and NACA65
series airfoils) at incidence relative to the inlet flow (Refs. 23-25). Response
predictions for entirely subsonic flows have indicated that a strong coupling can
exist between the nonuniform steady and the linear unsteady flow, particularly at
high Mach number and/or low vibration frequency.

Under the current phase of the overall research effort, this aerodynamic
analysis has been extended for transonic applications. Revised aerodynamic and
numerical models have been formulated, and numerical experiments have been con-
ducted to evaluate the solution procedure for cascades operating in the transonic
Mach number regime. In particular, first-order or unsteady shock-jump conditions
have been formally derived from the integral conservation laws for mass and tangen-
tial (to the shock) momentumand included in the aerodynamic model. In addition,
type-dependent and rotated differencing strategies, and options for fitting or
capturing shocks have been incorporated into the unsteady numerical model. At pres-
ent the unsteady transonic numerical approximation has only been implemented on a
cascade mesh and therefore the calculations described in this report are restricted
to cascades of sharp-edged blades with mean positions aligned with the steady flow
direction (c.f. Eq. (70)). Further, since it has not been possible to accurately
implement the unsteady shock-jump conditions on the cascade mesh, shock capturing
has been used for the calculations of discontinuous transonic flows. Work is
currently proceeding to improve the resolution of shock phenomenain the linear
unsteady calculation by implementing the numerical approximation on a local orthogonal
mesh which contains and extends well beyond the supersonic region(s) adjacent to the
reference blade surface.

Sample response predictions have been presented for subsonic and transonic
flows past vibrating cascades of DCAand flat plate airfoils. Numerical results
for a discontinuous transonic flow past an unstaggered DCAcascade illustrate the
following: the importance of applying type-dependent and rotated differencing in tile
unsteady transonic calculation; the effect of an inaccurate resolution of the steady
flow on unsteady predictions; and the effect of different approximations at the shock
on unsteady transonic solutions. These experiments reveal that errors due to an
inaccurate resolution of steady and unsteady shockphenomena rapidly damp out with
increasing distance from the shock, and that the first-order solution can be useful
for determining the physical realizability of a steady or zeroth-order solution.
Brief parametric studies for high subsonic and transonic flows past unstaggered and
staggered cascades indicate a dramatic variation in the aerodynamic response to
single-degree-of-freedom DCAblade motions with increasing inlet Mach number, while
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a similar variation in inlet Mach number has a relatively minor impact on flat
plate (i.e., classical linear theory) response predictions. Low-frequency
(_ = 0.i) DCApressure-difference predictions show reasonable trends with increas-
ing inlet Mach number; however, those for moderate (_ = 0.5) and high (m = 1.0)
vibration frequencies show perhaps an anomylous behavior with very steep gradients
just upstream and downstream of the shock. Unsteady pressure difference predictions
for the discontinuous flows show a sharply defined shock for the unstaggered DCA
cascade, but the shock is smeared for blades staggered at 45 deg. This can be
attributed to inaccuracies caused by the large number of axial mesh lines which
cross the shock in the staggered case.

The examples studied here indicate that improvements in the unsteady solution
procedure will be required for an accurate resolution of unsteady shock phenomena,
particularly for staggered cascades and high frequency blade motions. The cascade
mesh (Fig. 3) is not well suited for resolving the flow near shocks since the axial
mesh lines are not "parallel" to the shock. A prerequisite for improving the
unsteady solution capability and for assessing both the validity and usefulness of t_
first-order shock-jump conditions is the implementation of the unsteady numerical
approximation on a dense local grid (Fig. 4), which consists of mesh lines normal
and parallel to the shock.

Once the foregoing numerical difficulties are resolved, the present analysis
will provide an accurate first-order approximation to a weak solution (i.e., a
solution admitting discontinuities) of the time-dependent, full-potential equation
for small-amplitude blade motions. This analysis formally applies at the reduced
frequencies of interest (i.e., m _ _(i)) for turbomachinery applications and
includes the effects of real blade geometry, mean pressure rise or fall across the
blade row, operation at transonic Mach numbers and shocks and their motions in a
non-iterative, linear, frequency-domain calculation. It therefore represents a
significant advance over the classical linear analyses currently employed in turbo-
machinery aeroelastic investigations, and over the small-disturbance, unsteady,
transonic analyses that have been developed for isolated airfoil applications.
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APPENDIX

LIMITING FORMSOF THEGOVERNINGEQUATIONS

In this Appendix limiting forms of the aerodynamic equations presented in
this report are determined for thin airfoils undergoing small-amplitude unsteady
motions normal to the free-stream direction° Our purpose here is to demonstrate
that the present aerodynamic model reduces to the often-studied, small-disturbance
approximations of potential flow theory (Refs. 1 and 37-39). The latter are
derived by assuming that the airfoil produces only small steady and/or unsteady
fluctuations in the free-stream flow.

Consider two-dimensional flow in the x,y-plane, with free-stream velocity in
the direction of the positive x-axis, past a thin airfoil undergoing small-amplitude
harmonic motions. The mean position of the airfoil is located mainly along the x-
axis and the unsteady displacement is normal to this axis. Thus,referring to Fig. 22,
we let the location of tile upper and lower airfoil surfaces be defined by

(_B(x,y,t)= y± (x,t)-- _f'_.(X)- af.(x)ei_U'= o, xE[o,l] (AI)

where _ << 1 and 6 << 6 are characteristic lengths measuring the projection of the

mean airfoil surface on the y-axis and the unsteady amplitude, respectively. The

shape functions _±(x) and f±(x) are smooth with x-derivations of order unity every-

where along the chord, and the subscripts + and - refer to the upper and lower

surfaces of the airfoil, respectively. With _ << 1 and 6 << _ it is reasonable to

expect that the flow (except in small regions near the leading and trailing edges

of the airfoil) can be described by a velocity potential of the form

$(x,y,t) = x+ _(x,y) + _(x,y)e iWt

(A2)

where _ << I and c << _ are functions of 6 and 6, respectively such that as

_ 0 as _ _ 0 and _ _ 0 as 6 -_0. In addition, the coordinate scaling _ = Xy has

been introduced and it is assumed that $i and _i and their derivatives with respect

to x and y are of order unity. The parameters X, _ and e are to be determined by the

surface boundary condition and the governing differential equation.

Equations governing the steady _ = x + $ = x + _i, and small-disturbance

unsteady, _ = e_l , potentials (c.f. Eqs. (15), (16), and (17) and Eqs. (22), (24),

and (26), respectively) have already been presented for an arbitrary airfoil; i.e.,

_(i). We now seek consistent approximations to these equations for thin,

slightly-cambered airfoils at small mean angles-of-attack relative to the free

stream (i.e., _ << i).
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Steady Flow

After substituting equation (A2) into the steady flow tangency condition,
_B -' _ + _ where ex and ey are unit vectors inEq. (17), noting that ,± _ + _ f± x - y'

the x and y-directions, and neglecting terms of higher order in _, it follows that

0: E0]qb'Y" - X_ f'- ' on y = , X_" ,I (A3)

Thus for the expansion, Eq. (A2), to be meaningful

X= _(_/@) (A4)

Upon substituting Eqs. (A2) and (A4) into the steady full-potential equation,

Eq. (15), and neglecting terms that are definitely small as (3 + 0) compared to

those retained, the following approximate equation is determined for the steady

disturbance potential $i (x,y)

(_i_)2 [i M _ _(y+l) 2 - (A5)

Nondegenerate forms of this equation can be determined if (_/_)2 and II-M_I are botl

of order one; or if, _3/_2 is of order one and II-M_I is of order _. After return-

ing to the original variables $ and y, the resulting equations are

and

I- M_ -- ()"+ I)M= _x y ' II-M_I <<I (A7)

Thus for steady flow past a thin airfoil closely aligned with the free-stream

direction the full-potential equation can be approximated by one of the two forms,

Eq. (A6) or (A7), depending on the magnitude of the free-stream Mach number.

Equation (A6) is the classical linear equation governing small-disturbance subsonic

or supersonic flow and equation (A7) is the classical nonlinear equation governing

small-disturbance transonic flow. In either approximation the flow tangency

condition has the form

0- [0]_y _)f.1(X) On y , X_ ,, (A8)
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and it follows from Bernoulli's equation, Eq. (16), that the steady-disturbance

pressure is given by

_(,x,y) = P- Poo= - 2 (A9)

Unsteady Flow

After substituting _(x,y) = _$1(x,_), _(x,y), = e_l(X,_) , _ = _f+(x)_ , and
= (6/_)y into the unsteady flow tangency equation, Eq. (26), and into thg unsteady

differential equation, Eq° (24), and neglecting terms that vanish in the limit

<< _ ÷ O, it follows that

and

_l_'--'_ $ [f_(x)+ i_f+(x)] OR y= 0 _, XE [O,l] (AI0)

['-":- +
2 2

-c_'i_l i=._=c'>'-,l_xx_ :o
Thus for both sides of Eq. (AIO) to be of the same order

(All.)

8/E = @(_/_-) (AI2)

If the ratio (_/_) and the frequency _ are both of order unity, equation (All)

reduces to the classical linear equation of unsteady subsonic or supersonic flow

theory (Refs. 37, 38); i.e.,

(I--M2)I_:IXX + <_yy-- 2ioJM 2 ¢:J_x+ (i"12M2 _: O (AI3)

If, in addition, II-M21 is of order E, the first term in Eq. (AI3) can be

eliminated to recover the linear equation of unsteady transonic flow theory (Ref. 39).

The corresponding flow tangency and unsteady pressure relations are

• [0]_y : f'++_ i_f.,., on y =0"; xc ,I (A14)
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and

p=- 2(C#x+ (AI5)

where P = P + _ + pe i_t. In this approximation there is no coupling between the

small-disturbance steady and unsteady flows, and equations (AI3)-(AI5) could be

derived under the less restrictive assumption that 6 << 1 rather than 6 << _ << i.

If (_3/_2) is of order unity and II-;M I and m are both of order _, Eq.

(All) reduces to the linear, low-frequency, unsteady transonic equation (Refs. 3-6);

i.e.,

_ + ,,,-
(A16)

The corresponding flow tangency and unsteady pressure relations are

and

_y - 8f': iw,_f (A17)

P +2_x = - 2iuJ _ (AI8)

The right-hand-sides of equations (AI6) through (AI8) are of order _ and hence,

should be eliminated for a strict observance of the order of magnitude analysis.

However, these terms are often retained in an effort to extend the range of appli-

cability of the low-frequency transonic approximation and to provide a bridge to the

linear unsteady transonic theory. In the low-frequency, transonic approximation the

dependence of the unsteady flow on the underlying steady flow is reflected by the

appearance of the _x and _xx terms in the governing differential equation, Eq. (AI6)

If steady and unsteady disturbances are assumed to be of the same order of magnitude

then a similar order of magnitude analysis of the time-dependent, full-potential

equation will yield the nonlinear, low-frequency, unsteady, transonic approximation

studied by Ballhaus and Goorjian (Ref. 7).

In the derivation of the linear unsteady equations described earlier in this

report, terms have been eliminated simply on the basis that unsteady disturbances

are small relative to steady disturbances. The analysis in this Appendix demonstrat
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that these general linear equations reduce to familiar limiting forms for small
steady (_ << i) and unsteady (6 << 6) disturbances provided that additional
scalings on %, m, and II-M_I are considered. This suggests that the general
linear aerodynamic model will be applicable to transonic (JI-M_I << i) as well as
to subsonic or supersonic (II-M=I_(1)) flows for vibration frequencies cf order
unity or smaller.
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Fig. 1 Two-Dimensional Oscillating Transonic Cascade
with Finite Mean.Flow Deflection
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